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Block-Level Simulation of Non-Sampling Variability
in Decennial Census Population Counts

Joseph L. Schafer∗

April 19, 2021

Abstract

Population counts from a decennial census contain no sampling error, but they
do reflect noise from non-sampling sources such as omissions, erroneous enumer-
ations, mislocations, response errors, nonresponse and imputation of missing
values. The unpredictable and uncontrolled nature of those processes implies
that, if the same data collection and processing methods were repeatedly ap-
plied to the same fixed population, the resulting census counts would still vary.
Using published block-level counts from the 2010 Census and results from the
2010 Census Coverage Measurement program, we performed an experiment
to simulate the natural variability in population counts over repeated realiza-
tions of the census. Under conservative assumptions about error processes,
the average deviation in state-level population counts was less than 0.1% of
the population for every state. At the county level, the average deviation was
± 117 persons, or 0.3% of the county population. Across all census blocks with
at least one housing unit, the average deviation was ± 1.5 persons. Because of
the conservative assumptions applied in this simulation, these estimates should
be interpreted as lower bounds on the natural variability in census population
counts.

∗Office of the Associate Director for Research and Methodology, United States Census Bureau,
Washington, DC 20233, joseph.l.schafer@census.gov.
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1 Introduction

1 Introduction

After each Decennial Census of Population and Housing, the United States Census
Bureau publishes counts of persons in every state, followed by detailed figures for
smaller regions, the smallest being census blocks. State-level totals are used for ap-
portioning seats in the U.S. House of Representatives, and the more detailed numbers,
which are provided in the Census Redistricting Data (Public Law 94-171) Summary
File, are needed by states to delineate their congressional districts. Census data col-
lection is performed on the entire population without statistical sampling, so these
published counts contain no sampling variability. They are, however, subject to many
types of non-sampling error, including but not limited to those listed below.

� Omissions: Persons who were eligible to be counted in the census but were
not. Omissions may occur when entire housing units are missed, i.e., not listed
on the Master Address File (MAF). Within units that are listed on the MAF,
individuals may still be missed due to insufficient knowledge on the part of
the respondent, misunderstanding or misapplication of residency rules, and for
many other reasons.

� Erroneous enumerations: Persons reflected in the census count who were not
eligible to be included because they were duplicated (already correctly counted
at the same or a different location), nonexistent (fictitious persons), not alive
or not residing in the United States on Census Day.

� Mislocations: Eligible persons who were counted but assigned to places outside
the blocks where they resided on Census Day. An entire household will be
mislocated if a dwelling is placed in the wrong block on the MAF. Within
housing units that are correctly located, individuals may be mislocated for many
reasons, e.g., students living away at college who are mistakenly counted at their
parents’ homes. Mislocations do not affect the population total for the nation,
but they do impact how the population is distributed across subnational areas.

� Response errors in characteristics. Mistakes made when recording or process-
ing demographic characteristics (age, sex, etc.) of persons can affect tabulations
involving those characteristics.

� Nonresponse and imputation of counts and missing characteristics. When all
attempts to obtain information have been exhausted, the occupancy status or
number of persons living in some housing units remains unknown. Numbers of
persons in these unresolved units are predicted by statistical procedures known
as count imputation, and unknown characteristics for these persons are filled in
by methods called characteristic imputation.
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1 Introduction

During and immediately after each census, the U.S. Census Bureau studies non-
sampling errors to estimate their impact on data quality and to plan improvements for
the next decade. Many of these projects fall under the Census Coverage Measurement
(CCM) program and Census Program for Evaluation and Experiments (CPEX). De-
spite these efforts, of course, non-sampling errors can never be fully eliminated, and
thus any published figure from a census will reflect some degree of systematic bias
and random variation.

In this report, we focus on the following question: How much variation in popu-
lation counts would be seen if a census could be conducted over and over, i.e., if the
same general procedures for data collection and processing were repeatedly applied
under similar conditions, with the underlying population held fixed?

Strictly speaking, the answer to this question is unknowable. Each census is a
unique, unrepeatable event; by the time it has finished, the population has changed
and the prevailing conditions have been altered by many happenings including the
census itself. Nevertheless, by gathering evidence from data quality studies and pub-
lished census figures, we can represent major components of non-sampling error with
statistical models. In constructing these models, we estimate components of varia-
tion across domains within a census, and then use these as proxies for unobservable
variation over hypothetical repetitions of the census. Studies of this type have a
long history and have led to major changes and improvements in decennial census
methodology (Hansen et al., 1961; Fellegi, 1964; Tepping and Bailar, 1973).

In the remainder of this document, we describe a computer experiment designed
to mimic major sources of non-sampling variability in population counts from the
2010 census. Our simulations use block-level data from Summary File 1 (SF1) for
fifty states plus the District of Columbia, combined with results from the 2010 CCM
program, all of which are available to the public. Although these results are most
applicable to 2010, they may also lend insight into the properties of counts from
2020 to be released later this year. Extrapolations to 2020, however, are subject to
these caveats: first and foremost, the major disruptions to census operations caused
by corona virus pandemic; second, the impact of new data-collection methodologies
introduced in 2020, including the online self-response option and the enhanced use of
administrative records and third-party data; and third, the impact of random noise
added by the new Disclosure Avoidance System (DAS), which differs from the random
data-swapping methods used for confidentiality protection in 2010.

In designing this simulation, we identified major sources of error in census counts
and chose whether and how to describe each one based on subject matter knowledge
and the data available to us. When in doubt, we tended to be conservative, erring on
the side of reflecting too little noise rather than too much. Therefore, we interpret
these results not as the most plausible educated guesses on the amount of natural
variability in census data, but as lower bounds.
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2 Components of a Census Population Count

2.1 Housing Units versus Group Quarters

For this simulation, we focus on census blocks, the smallest geographic regions for
which census figures are tabulated. For the 2010 census, the United States was
divided into more than 11 million blocks, many of which were uninhabited. For every
census block b = 1, . . . , B, the SF1 provides

Pb = census population count in block b.

Note that Pb is not necessarily the true number of persons actually residing in the block
on Census Day. The goal of this exercise is neither to estimate the true population
nor to assess the likely size of the discrepancy between Pb and the true population.
Rather, we are describing the random variability we would see in Pb if the census
could be repeated under similar conditions with the true population held fixed.

For census purposes, the dwellings where people reside are of two fundamentally
different types.

� Group quarters (GQs). Approximately 2.6% of the 2010 census population
total came from GQs. Roughly speaking, GQs are places owned or managed
by service providers where people live in a group arrangement, and residents
of a GQ are typically not related to one another. Examples include prisons,
dormitories, military barracks, residential treatment facilities, convents, and
group homes for persons with disabilities.

� Housing units (HUs). The remaining 97.4% of persons in the 2010 census were
counted in HUs, which include houses, apartments, and mobile homes that are
occupied as someone’s usual place of residence.

Census enumeration procedures for GQs and HUs are quite different, and SF1 tabu-
lates them separately within each block. Thus we have

Pb = P
(GQ)
b + P

(HU)
b ,

where

P
(GQ)
b = persons in block b within GQs, and

P
(HU)
b = persons in block b within HUs.

SF1 also provides

Hb = number of housing units in block b.
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2 Components of a Census Population Count

Blocks with no HUs cannot have HU persons,

Hb = 0 ⇒ P
(HU)
b = 0,

but blocks with no HU persons may have HUs,

P
(HU)
b = 0, ; Hb = 0

because it is possible for all HUs in a block to be unoccupied.

GQs were omitted from the 2010 CCM program, and little is known about enu-
meration error for GQs relative to HUs. For this experiment, we do not attempt to
quantify randomness in the GQ population counts. That is, we hold P

(GQ)
b fixed and

simulate variability in P
(HU)
b for b = 1, . . . , B.

2.2 Substitutions

Approximately 1.9% of the HU persons in the 2010 census were substituted, meaning
that their full set of characteristics (age, sex, relationship to Person 1 on the census
form, race, and Hispanic origin) had been imputed or filled in. Substitution was
used when the number of persons living in the HU could not be determined. In
that case, the number of persons was predicted by a set of procedures known as
count imputation. Substitution was also necessary when the number of persons living
in the unit had been determined in some fashion (e.g., by interviewing a neighbor)
but little or no additional information was available. In both of these situations, all
characteristics for the persons in the unit were filled in with values borrowed from a
nearby unit with the same number of persons. SF1 groups these two types together,
reporting

Ib = total number of substitutions in block b.

Substitutions are traditionally excluded from census coverage studies because,
even when they represent actual persons, so little is known about them that it would
be difficult or impossible to determine whether and where they should have been
counted. Nevertheless, the presence of a large number of substituted persons in a
block suggests greater degree of noise in the HU population count, and the realized
value of Ib could easily change if the census were repeated.

2.3 Correct and Erroneous Enumerations

For this study, we classify the non-substituted HU persons into five different types,

P
(HU)
b − Ib = E1b + E2b + E3b + E4b + E5b,

where
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2 Components of a Census Population Count

Table 1: Estimated components of coverage for the United States housing-unit (HU)
population (in thousands) in the 2010 census, based on results from the Census Cov-
erage Measurement program. Source: Mule (2012), Table 3

Estimate Percent

Total HU population 300,703 100.0

Correct enumerations 284,668 94.7
Enumerated in correct block 280,852 93.4
Mislocated to another block in same county 2,039 0.7
Mislocated to another county in same state 830 0.3
Mislocated to another state 948 0.3

Erroneous enumerations 10,042 3.3

Substitutions 5,993 2.0

� E1b represents correct enumerations (persons eligible to be counted in the census
and who were indeed counted) who were correctly located in block b;

� E2b represents correct enumerations who were mislocated to block b from an-
other block in the same county;

� E3b represents correct enumerations who were mislocated to block b from an-
other county in the same state;

� E4b represents correct enumerations who were mislocated to block b from an-
other state; and

� E5b represents erroneous enumerations (fictitious persons, persons not alive or
living outside the United States on Census Day, duplicates of persons who were
correctly counted elsewhere).

Because P
(HU)
b and Ib are published in SF1, the sum E1b + · · ·+E5b is known for every

block in the 2010 census, but the values of the individual components E1b, . . . , E5b

are not. Estimates of the national totals
∑B

b=1E1b, . . . ,
∑B

b=1E5b obtained from the
2010 CCM program were reported by Mule (2012) and are shown in Table 1.
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3 Simulation Procedures

3.1 Overview of Simulation

Using the decomposition

P
(HU)
b = Ib + E1b + E2b + E3b + E4b + E5b,

we simulated new values of P
(HU)
b for every block b by drawing plausible new values

of the components on the right-hand side of this equation and adding them up. The
simulated versions are denoted by

P
(HU)*
b = I∗b + E∗1b + E∗2b + E∗3b + E∗4b + E∗5b. (1)

For each block, the number of HUs was held fixed at Hb, the value reported in SF1.
That is, we did not explicitly model noise due to omissions, erroneous inclusions, and
mislocations of entire HUs that arise when constructing the MAF. However, some of
that noise in the HU counts did show up in the variability of the components of the
person counts in (1). For example, our simulated values of E∗2b, which we describe
below, were meant to include people who were mislocated to a neighboring block
because the HU where they live was mistakenly placed in the wrong block on the
MAF.

With Hb fixed, any block with Hb = 0 must produce P
(HU)∗
b = 0. We eliminated

those blocks from our universe, considering only the 6, 379, 963 blocks from the 2010
census that contained at least one HU, with 300, 758, 215 total HU persons.

3.2 Simulating the Number of Substitutions

Counts of substituted persons were simulated by an empirical Bayes procedure that
smoothes the estimated substitution rates across blocks within states. Suppose that

Ib |Hb, λb ∼ Poisson(Hbλb),

λb |α, β ∼ Gamma(α, β),

where Poisson(µ) denotes a Poisson distribution with mean µ, and Gamma(α, β)
denotes a Gamma distribution with shape parameter α and rate parameter β. This
is the standard Bayesian Poisson model parameterized in terms of a known exposure
Hb and an unknown per-HU substitution rate λb (see Section 2.7 by Gelman et al.
(2013)). For fixed values of the hyperparameters α and β, the implied posterior
distribution for the substitution rate is

λb | Ib, Hb, α, β ∼ Gamma(α + Ib, β +Hb). (2)
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3 Simulation Procedures

To obtain plausible values for α and β, we estimated them independently within
each state by the method of maximum likelihood (ML). Marginalizing over the un-
known λb, the conditional distribution of Ib given Hb is negative binomial with log-
mean

logE(Ib |Hb) = logHb + β0

and concentration parameter α. Using negative binomial regression as implemented
in the R package MASS (Venables and Ripley, 2013), we fit an intercept-only negative
binomial regression with a log link and an offset term logHb. Fitting this model to
the blocks within a state yields two estimated parameters: the intercept β̂0 and the
concentration parameter called θ̂ which corresponds to α. After fitting this model,
we set

α = θ̂,

β = θ̂/ exp(β̂0).

After obtaining α and β for a given state, we generated new versions of the block-level
substitution counts by drawing

λb | Ib, Hb ∼ Gamma(α + Ib, β +Hb),

followed by
I∗b |Hb, λb ∼ Poisson(Hbλb)

independently for each block in the state. Under this procedure, the expected number
of substitutions generated for any given block is a compromise between (a) the number
of substitutions actually seen for that block in the 2010 census, and (b) the average
number of substitutions seen for all blocks with a similar number of HUs.

Because α and β depend only on data from SF1, they remained fixed over repe-
titions of the simulation, but new values for λb and I∗b were generated for each block
in each simulation run.

3.3 Simulating Correct and Erroneous Enumerations

Before generating E∗1b, . . . , E
∗
5b, we first needed to guess the values of E1b, . . . , E5b that

were realized in the 2010 census. As previously mentioned, SF1 provides the total
P

(HU)
b − Ib = E1b + · · · + E5b for every block, and results from the CCM program

provide some guidance on how to subdivide those totals. We regard the vector Eb =
(E1b, E2b, E3b, E4b, E5b) as having a multinomial distribution

Eb |P (HU)
b , Ib,πb ∼ Mult(P

(HU)
b − Ib,πb), (3)

8



3 Simulation Procedures

Table 2: Mean and percentiles of random probabilities drawn from the Dirichlet
distribution with concentration κ = 200, representing block-level heterogeneity in
rates of correct and erroneous enumerations

mean 0.5% 2.5% 25% 50% 75% 97.5% 99.5%

π1b 0.953 0.906 0.920 0.944 0.955 0.964 0.978 0.983
π2b 0.007 0.000 0.000 0.003 0.005 0.010 0.022 0.031
π3b 0.003 0.000 0.000 0.000 0.002 0.004 0.014 0.021
π4b 0.003 0.000 0.000 0.000 0.002 0.004 0.014 0.021
π5b 0.034 0.010 0.014 0.025 0.032 0.042 0.063 0.075

where πb = (π1b, π2b, π3b, π4b, π5b) is a vector of probabilities that sum to one. Based
on the percentages shown in Table 1, it is reasonable to believe that

π1b ≈ 0.934/(1− 0.02) = 0.953,

π2b ≈ 0.007/(1− 0.02) = 0.007,

π3b ≈ 0.003/(1− 0.02) = 0.003,

π4b ≈ 0.003/(1− 0.02) = 0.003,

π5b ≈ 0.033/(1− 0.02) = 0.034.

However, it is not reasonable to force πb to be identical for b = 1, . . . , B, as variation
in local conditions will produce some block-to-block heterogeneity. Moreover, even for
a single block, it seems apparent that πb could change over repeated realizations of
the census, because certain local conditions (e.g., the particular enumerator assigned
to the block) could vary over those realizations. To reflect this variation, we simulate
πb for each block at each simulation run by drawing it from a Dirichlet distribution

πb |α ∼ Dirichlet(α), (4)

where α = (α1, α2, α3, α4, α5) is the vector of Dirichlet shape parameters. To obtain
(0.953, 0.007, 0.003, 0.003, 0.034) as the average value for πb, we set the vector of shape
parameters to

α = κ × (0.953, 0.007, 0.003, 0.003, 0.034),

where κ > 0 is a concentration parameter that controls how tightly the πb vectors
are distributed around their average. For this experiment, we set κ = 200, which
keeps the πb within a plausible range. Percentiles for the probabilities π1b, . . . , π5b
under this joint distribution are shown in Table 2. For example, the rate of erroneous
enumerations π5b has a mean of 0.034, and 99% of these rates lie within (0.010, 0.075).

9



3 Simulation Procedures

In each simulation run, for each block b = 1, . . . , B, we guess the value of Eb =
(E1b, E2b, E3b, E4b, E5b) by first drawing πb from the Dirichlet distribution (4), and
then drawing Eb from the multinomial distribution (3). After obtaining this guess
for Eb, we proceed to simulate a new version that could plausibly have arisen if the
census were repeated on the same population under similar conditions. The new
version E∗b = (E∗1b, E

∗
2b, E

∗
3b, E

∗
4b, E

∗
5b) was created as follows.

1. Set E∗1b = E1b.
1

2. Distribute E2b persons over randomly selected blocks in the same county, draw-
ing these blocks with probability proportional to size with replacement (ppswr),
using the number of housing units in the block Hb as the measure of size. After
performing this distribution for all blocks in the county, set E∗2b to the number
placed into block b.2

3. Distribute E3b persons over blocks in the same state, selecting the blocks by
ppswr. After performing this distribution for all blocks in the state, set E∗3b to
the number placed into block b.

4. Distribute E4b persons over blocks in the nation, selecting the blocks by ppswr.
After performing this distribution for all blocks in the nation, set E∗4b to the
number placed into block b.

5. Simulate E∗5b by drawing from a Poisson distribution with mean P
(HU)
b × π5b.3

Repeat for blocks b = 1, . . . , B.

Note that in Steps 2–4, we are using E2b, E3b and E4b, the guessed numbers
of persons mislocated into block b from other places, as proxies for the unknown
numbers of persons mislocated out of block b to other places. In effect, we remove
E2b+E3b+E4b persons from the block and replace them by E∗2b+E

∗
3b+E

∗
4b persons. The

1Recall that E1b represents persons who were captured by the census in the correct block. The
easy-to-count population is concentrated in this group, and in a repetition of the census, it is likely
that many of those persons would again be captured in the correct block. However, Eib may also
include some hard-to-count persons who happened to be captured in the actual census but might
not be captured in a repetition. Therefore, setting E∗

1b = E1b is conservative, in the sense that it
will tend to understate the variability in E∗

1b, particularly in areas that have many persons who are
prone to be missed, but whose probabilities of being counted are not so low that they could never
be captured.

2This procedure, which mislocates each person independently, ignores the fact that some mis-
locations happen at the HU level, when an HU is mistakenly placed in an adjacent block on the
MAF, causing all persons in the HU to be mislocated together. A simulation involving HU-level
mislocations would tend to increase the variance of E∗

2b, so our procedure is conservative.
3The marginal distribution of E5b implied by (3) is binomial. Drawing E5b from that binomial

would force the simulated value E∗
5b to be less than or equal to the number of enumerated HU

persons reported in the 2010 census, which is logically unnecessary. The Poisson distribution used
for E∗

5b has the same mean as the binomial, a slightly higher variance, and no strict upper limit.
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4 Results

number removed has extra-binomial variability arising from the Dirichlet sampling of
πb, whereas the number added is essentially a Poisson variate with mean proportional
to Hb.

This simulation was programmed in R and run 100 times using R version 3.5.2
(64-bit) on Redhat linux.

4 Results

4.1 Measures of Error

Consider a geographic domain D that corresponds to a set of blocks. Let

ND =
∑
b∈D

P
(HU)
b

denote the published 2010 census count of HU persons, and let

N ∗D =
∑
b∈D

P
(HU)*
b

denote the count of HU persons generated by a simulation run. The mean absolute
deviation (MAD) is

E ( |N ∗D −ND| ) , (5)

where the expectation is taken over repeated simulation runs. The mean absolute
percent error (MAPE) is defined as

100 × E

(
|N ∗D −ND|
ND

)
, (6)

which is defined ifND > 0. To estimate MAD and MAPE, we replace the expectations
in (5) and (6) by sample averages over the 100 runs.

To summarize over a collection of domains, we average the estimated MAD and
MAPE over that collection. We also examine the raw signed error (RSE) (N ∗D −
ND), computing percentiles of the RSE over the collection of domains within each
simulation run, then averaging those percentiles over the runs. Percentiles of RSE will
reveal sitations where the error distributions are asymmetric, which tends to happen
for small domains (e.g., blocks) where ND may be nearly or exactly zero.

Error summaries for the entire United States, each of the fifty states, and the
District of Columbia are shown in Table 3. At the national level, the typical error
(MAD) is aproximately± 4, 716 persons, or 0.002% of the HU population. At the state
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4 Results

Table 3: Error summaries for the United States, fifty states and the District of
Columbia: housing unit population from the 2010 census, mean absolute deviation
(MAD), and mean absolute percent error (MAPE) over 100 simulation runs

Population MAD MAPE

United States 300,758,215 4,716 0.002

Alabama 4,663,920 1,006 0.022
Alaska 683,879 204 0.030
Arizona 6,252,633 1,130 0.018
Arkansas 2,836,987 598 0.021
California 36,434,140 15,642 0.043
Colorado 4,913,318 732 0.015
Connecticut 3,455,945 566 0.016
Delaware 873,521 258 0.030
District of Columbia 561,702 402 0.072
Florida 18,379,601 6,853 0.037
Georgia 9,434,454 933 0.010
Hawaii 1,317,421 413 0.031
Idaho 1,538,631 405 0.026
Illinois 12,528,859 1,566 0.012
Indiana 6,296,879 667 0.011
Iowa 2,948,243 433 0.015
Kansas 2,774,044 360 0.013
Kentucky 4,213,497 607 0.014
Louisiana 4,405,945 665 0.015
Maine 1,292,816 996 0.077
Maryland 5,635,177 723 0.013
Massachusetts 6,308,747 679 0.011
Michigan 9,654,572 2,026 0.021
Minnesota 5,168,530 760 0.015
Mississippi 2,875,333 452 0.016
Missouri 5,814,785 1,085 0.019
Montana 960,566 498 0.052
Nebraska 1,775,176 312 0.018
Nevada 2,664,397 529 0.020
New Hampshire 1,276,366 413 0.032
New Jersey 8,605,018 1,751 0.020
New Mexico 2,016,550 446 0.022
New York 18,792,424 1,217 0.006
North Carolina 9,278,237 2,101 0.023
North Dakota 647,535 213 0.033
Ohio 11,230,238 1,417 0.013
Oklahoma 3,639,334 593 0.016
Oregon 3,744,432 527 0.014
Pennsylvania 12,276,266 1,163 0.009
Rhode Island 1,009,904 275 0.027
South Carolina 4,486,210 1,137 0.025
South Dakota 780,130 255 0.033
Tennessee 6,192,633 910 0.015
Texas 24,564,422 4,608 0.019
Utah 2,717,733 1,475 0.054
Vermont 600,412 390 0.065
Virginia 7,761,190 662 0.009
Washington 6,585,165 646 0.010
West Virginia 1,803,612 588 0.033
Wisconsin 5,536,772 1,279 0.023
Wyoming 549,914 260 0.047
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4 Results

Table 4: Error summaries for United States counties, classified by the population of
housing unit (HU) persons: number of counties (N), mean absolute deviation (MAD),
mean absolute percent error (MAPE), and percentiles of raw signed error (RSE),
averaged over 100 simulation runs

RSE

N MAD MAPE 0.5% 2.5% 25% 50% 75% 97.5% 99.5%

All counties 3,143 117 0.31 -1,603 -476 -29 17 67 356 866

Counties with HU pop. < 1,000 37 10 1.60 -16 -12 -1 5 12 31 36
Counties with HU pop. 1,000–9,999 691 28 0.56 -78 -51 -5 14 34 86 120
Counties with HU pop. 10,000–99,999 1,849 74 0.26 -307 -180 -28 24 76 221 340
Counties with HU pop. 100,000–999,999 527 292 0.11 -1,723 -1,147 -211 -14 172 726 1,250
Counties with HU pop. 1,000,000+ 39 1,463 0.08 -5,584 -4,664 -1,833 -631 583 1,660 2,381

level, the MAD ranges from ± 204 persons (Alaska) to ± 15, 642 persons (California),
and the MAPE ranges from 0.006% (New York) to 0.077% (Maine).

Table 4 shows error summaries for counties, grouping them by population of HU
persons using cutpoints that are equally spaced on a log scale. In addition to MAD
and MAPE, this table also displays select percentiles of the RSE. Averaged over
all counties, the typical error (MAD) is ± 117 persons, or 0.31% of the population.
MAD tends to increase with county population size, whereas MAPE tends to decrease.
Percentiles of the RSE reveal an interesting pattern: the distribution of raw signed
errors is right-skewed for smaller counties and left-skewed for larger counties.

Table 5 shows summary measures at the block level. Blocks are grouped by the
number of HU persons in the 2010 census. MAPE is omitted from this table, because
the statistic is undefined for blocks with zero HU persons. Averaged over all blocks,
the typical error is ± 1.5 persons. In blocks with zero HU persons, the distribution of
RSE is right-skewed, because simulated population counts cannot be negative. In all
other block size categories, the RSE is nearly symmetric.

To reiterate, we believe that the summaries in these tables should be viewed as
lower bounds on the natural variability in the census counts. Some sources of variation
were not represented in the simulation, notably:

� Group quarters were not considered, eliminating noise in all GQ population
counts.

� The number of HUs in each block was held constant, eliminating some of the
noise due to errors in the listing of HUs.

� Setting E∗1b = E1b very likely understated the amount of noise in these counts of
correctly enumerated persons, because randomness in the number of omissions
was not considered.
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4 Results

Table 5: Error summaries for United States census blocks containing at least one
housing unit (HU), classified by the population of HU persons: number of blocks (N),
mean absolute deviation (MAD), and percentiles of raw signed error (RSE), averaged
over 100 simulation runs

RSE

N MAD 0.5% 2.5% 25% 50% 75% 97.5% 99.5%

All blocks with at least one HU 6,379,963 1.5 -10 -5 -1 0 1 5 10

Blocks with 0 HU persons 191,885 0.1 0 0 0 0 0 1 2
Blocks with 1–9 HU persons 1,825,130 0.4 -3 -2 0 0 0 2 3
Blocks with 10–99 HU persons 3,663,268 1.5 -7 -4 -1 0 1 4 7
Blocks with 100–999 HU persons 691,557 4.1 -18 -11 -3 0 3 12 19
Blocks with 1,000+ HU persons 8,123 14.5 -57 -39 -11 1 12 37 53

� Mislocated individuals in each block were independently distributed across other
blocks, ignoring the clustering that occurs when all residents of a unit are mis-
placed together.
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Attachment 2: Simulating Block Level Populations Using

2010 Census Data and Coverage Measurement Results

William Bell

April 19, 2021

The formula for dual system estimation (DSE) of the housing unit population1 is

DSE = Cen×  ×  (1)

= Cen× 

Cen
× 



Á




where Cen = census count, = number of data defined census enumerations,  =

number of correct enumerations,  = P-sample total, and  = P-sample matches.

(The P-sample is the sample of persons and housing units from the post-enumeration

survey (PES) done to measure census coverage by matching results to the census.) If

the independence assumption that underlies the use of this formula holds, then with

a large P-sample used to estimate the match rate,  →  , where  is the true

population. In this case DSE →  . Here , and hence , are treated as known

so that, under the independence assumption, errors in estimating  and  are

what produce errors in DSE as an estimate of the true housing unit population  .2

Conversely, from a Bayesian perspective, uncertainty about  and  are what

lead to uncertainty about  . From this perspective, simulations of  and  that

reflect uncertainty about these quantities can be used with formula (1) to provide

simulations of the true population  that reflect the uncertainty about  . If the

simulations came from posterior distributions obtained from modeling these rates

given suitable data, these would be posterior simulations of  given the data. With

simulations obtained just using distributional assumptions about  and  , these

may be better termed “prior simulations.”

The simulations of  create heterogeneity that, in the simulations described here,

led to overall simulated positive undercounts. This is analogous to unaccounted for

variation in match rates estimated in the PES leading to “correlation bias” in the

DSEs (for which the PES uses demographic analysis sex ratios to make an adjustment

to the DSEs for adult males). Because the simulations reported here don’t account

1In 2000 and 2010, DSE was not applied to the group quarters population.
2Whole person imputations (non-data defined person records), which are Cen −, are effec-

tively estimates for persons in housing units for which no, or very limited, information was supplied

about the residents. They are subject to their own errors as estimates for the actual residents, but

as these records do not contain enough information for the PES matching and follow-up, they are

subtracted from Cen and effectively treated as (potential) census omissions by DSE.
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for known heterogeneity across demographic groups and other factors, the simulated

populations are rescaled to force agreement with the census total at the national level.

This is consistent with the estimated net undercount in the 2010 census being very

close to zero.

The DSE formula (1) was applied using block level simulations of  and  to

produce simulations of block level populations via the following steps.

1. For each block , start with the actual census count of data defined persons,

.

2. Simulate correct enumerations for the block, , by first simulating the block’s

correct enumeration probability, , then simulating the block’s count of

correct enumerations from a Binomial( ) distribution. Details of these

simulations are given in Joe Schafer’s documentation (Attachment 1) of how

he simulated various components of the census count.3 For the purposes here,

imputations are not simulated; we hold the census count and its number of data

defined enumerations fixed.

3. Simulate the block’s census inclusion probability, , from a Beta( ) dis-

tribution with  = 6 and  = 7. These values of  and  were chosen to

provide what we believed to be a reasonable amount of variation over blocks

in the census inclusion probabilities, while giving a median of 933, this figure

closely matching the overall probability of census inclusion in the correct block

obtained from the 2010 PES.4

4. Use the block simulated values of  and  to calculate an initial simulated

value of block population from the DSE formula as Pop1 = . Rescale

all the block level Pop1 so their sum across all blocks agrees with the national

census count of the housing unit population, i.e., compute Pop2 = Pop1 ×
(
P

Cen

.P
 Pop1) .

5. Round Pop2 to an integer; call this Pop3. Simulate census omissions for

block  from a Binomial(Pop3 1− ) distribution. Add these to the correct

3Note that we define CE as enumerated in the correct block (actually, within the block cluster’s

search area), and do not need the components of census enumerations that Joe Schafer simulated

that refer to counted in the right county but wrong block, etc.
4Table 3 of DSSD 2010 Census Coverage Measurement Memorandum #2010-G-01 (Mule 2012)

reports an overall omission rate of .053 corresponding to a probability of census inclusion of .947.

However, this is the probability of someone being included anywhere in the U.S. For the simulation

of block level population we want the probability of someone being included in the census in the

correct block. From Table 3 this is 280 852300 667 = 934, where 280 852 000 is the estimated

number of census enumerations in the correct blocks, and 300 667 000 is the total estimate of the

housing unit population from DSE.
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census enumerations within the block to get revised block level housing unit

populations, i.e., Pop4 = + omissions.

6. As in Step 4, rescale the Pop4 values to get revised population figures, Pop5 =

Pop4 × (
P

Cen

.P
 Pop4) .

7. Round the Pop5 to produce Pop, the final simulated block level populations.

Aggregate these to counties, states, and the nation.

The simulation of the block level correct enumeration and census inclusion proba-

bilities,  and , at Steps 2 and 3 provides plausible variation of these quantities

over blocks. Simulation of the counts of correct enumerations and census omissions,

 and omissions, at Steps 2 and 5, then provides additional variation in the real-

ized block level  and omission proportions. These binomial simulations sensibly

provide more relative variation in the results for smaller blocks, since the distribution

of a proportion from a binomial distribution becomes more concentrated the larger

is the binomial  (which here is either  or Pop3).

The rescaling of the simulated block population values at Steps 4 and 6 so they

sum to the national census count was done to control the net national undercount in

the simulated populations to be close to zero, as was the case for the 2010 census.5

When the parameters of the beta distribution used to simulate the  were deter-

mined so the beta distribution mean, rather than its median, matched the overall

P-sample match rate, more substantial undercounts resulted, so that the rescaling of

the simulated population values at Step 4 was more severe. This alternative was thus

seen as less desirable.

The other alternative of simply analyzing simulation results that reflect an over-

all national undercount of some substance, when this was not observed for the 2010

census, was also seen as less desirable. Previous research has established how 

rates and P-sample match rates vary with certain population characteristics, such as

demographics, and none of that variation is reflected in the simple simulation frame-

work used here. What can be learned from the simulations is something about how

coverage error may vary across subnational areas due to variations in key quantities —

correct enumeration rates and census inclusion probabilities. The simulations provde

no new information about the overall level of undercount or overcount, though the

choices of how much variation is allowed in the key quantities do affect this in the

simulations. Thus, it seemed sensible to control the net national undercount to re-

main close to a value near zero as was the case for the 2010 census and PES from

which the data used here was drawn.

5The net national undercount if we compare census counts to the Pop2 from Step 4 is zero by

construction. The additional variation from the binomial simulations of omissions at Step 5 then

produces a national undercount that motivates the rescaling at Step 6. After rounding the Pop5
values at Step 7, the final Pop values yield a small national level undercount of about 008%.
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Limitations of the simulation results include the following:

• Variation in the block level  and  rates is obtained by simulations from

assumed distributions. These distributions do not reflect known heterogeneity

in the rates across demographic groups or other factors. The assumed distri-

butions are just an attempt to reflect a reasonable amount of variation in the

block level rates as an aggregate. Note that the Appendix shows that distri-

butions across blocks of the simulated  and  proportions agree

well with tabulations of the distributions of block level CE and P-sample match

rates from the 2010 PES. The simulations do not, however, provide meaningful

results for specific individual states, counties, or blocks.

• For blocks with a census count of zero, or whose census count is all imputations,
the DSE formula produces a population estimate of zero regardless of the values

of the CE and match rates.

• The simulations of the rates do not reflect any dependence between the CE
and P-sample match rates, nor possible dependence between the match rates

and the block level imputation rates. There has been very little study of this

subject, and so we have essentially no guidance for building any dependence

into the simulations.

• Imputations are known and are effectively treated as omissions, consistent with
how the DSE is applied and was used to estimate omissions for components

of error in the 2010 census.6 Some imputations are certainly errors in the

census count (e.g., person records imputed into housing units that were vacant

on census day), while others may reflect actual persons for whom very little

information was reported (e.g, an accurate population count is obtained for

a housing unit but with no information reported on the specific residents).

Though we do not simulate imputation errors, they are to some extent covered

by the DSE formula treating them as omissions.

• The DSE formula (1) is being used to simulate variation only in the housing
unit population, omitting from consideration the population residing in group

quarters. This is consistent with the restriction to the housing unit population

of coverage measurement for the 2000 and 2010 censuses.

6See again Table 3 of Mule (2012), DSSD 2010 Census Coverage Measurement Memorandum

#2010-G-01.
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Results from the simulations

The simulation procedure described above was applied to examine variation in

coverage errors and relative percent coverage errors defined, respectively, as

census coverage error = Pop − Cen

relative coverage error = 100× Pop − Cen

Cen

where, as mentioned above, both Pop and Cen refer to the housing unit population,

i.e., excluding the group quarters population. The relative coverage error is much like

the usual undercount rate, except it is expressed relative to the census count in the

denominator, rather than to the population figure, which would give the standard

definition of undercount rate. For the rough assessments made here this distinction

makes little difference, and it had the advantage that the same set of denominators

was used for each simulation, since the census counts are held fixed across simulations.

The simulations were carried out at the block level, with the simulated Pop values

then aggregated to counties, states, and the total U.S. As noted earlier, for blocks

with a census count of zero, or whose census count is all imputations, the DSE

formula produces a simulated population figure of zero for every simulation, so that

the coverage error for all such blocks is automatically zero. Relative coverage errors

are thus undefined for such blocks and, partly for this reason, we shall not examine

relative coverage errors at the block level.7

We report here summary measures of coverage error at the county and block

level. The summary measures — mean absolute error, mean absolute percentage error

(county level only), and a set of percentiles of the distribution of coverage error —

are analogous to those used to measure variation in census counts for the simulations

described in Attachment 1, which gives formal definitions of the measures. The sim-

ulations described there investigate potential variability in census counts, not census

coverage errors, but while the definition of individual errors differ, the summary mea-

sures applied to the two sets of errors are the same. Because the magnitude of the

coverage error is larger for larger areas, in addiiton to presenting results that average

over all U.S. counties, we present results that average across groups of counties defined

by size as determined by their census housing unit populations. Similarly, results are

shown for all blocks with at least one housing unit, and for groups of blocks defined

by their census housing unit person counts.

7It is also the case that, due to the very small populations (often single digits) of very small

blocks, very large relative errors can occur at the block level. For example, if a block has one census

housing unit and the census records one resident while the simulated population figure is two, that

is a 100% relative undercoverage error, while if the reverse occurs (the census counts two residents

and the simulation gets one), that is a 50% relative overcoverage error. The many extremes that

occur for small blocks make interpretation of summary measures of relative coverage errors difficult

at the block level.
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Table 1 shows the summary census coverage error measures at the county level.

The mean absolute error (MAE) over all counties is 964 persons; the MAEs increase

substantially as the size categories increase, as was just noted. The mean absolute

percentage error (MAPE) across all counties is 1.56%, and the MAPEs decrease

as the size categories increase. While the extreme percentiles reflect some large in

magnitude errors for the largest size category, these are for counties with very large

census counts, so the MAPE for this category is only 077%

Table 1. Simulated census coverage error measures for counties

percentiles of errors

Subsets of counties  MAE MAPE 0.5% 2.5% 5%

All counties 3 143 964 156% −14 316 −4 009 −1 841
HU pop  1 37 23 347% −35 −27 −22
HU pop 1 − 10 691 121 232% −366 −210 −146
HU pop 10 − 100 1 849 446 140% −2 334 −1 208 −832
HU pop 100 − 1 000 527 2 930 106% −20 682 −10 204 −7 222
HU pop 1 000+ 39 14 848 077% −54 971 −50 462 −44 833

Table 1. (continued) Simulated census coverage error measures for counties

percentiles of errors

Subsets of counties 25% 50% 75% 95% 97.5% 99.5%

All counties −86 126 428 2 048 3 731 9 595

HU pop  1 0 15 30 54 62 74

HU pop 1 − 10 6 79 156 284 331 428

HU pop 10 − 100 −106 178 449 1 053 1 316 1 891

HU pop 100 − 1 000 −1 631 531 2 059 6 278 7 910 10 611

HU pop 1 000+ −12 052 1 209 10 126 20 007 24 326 51 602

HU = housing unit, MAE = Mean Absolute (L1) (coverage) Error, MAPE = Mean

Absolute Percentage coverage Error

Source: Comparisons of 2010 SF1 census counts with author’s simulated population

figures.
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Table 2 shows the simulated coverage error measures for blocks. The MAE over

all blocks is around 5.5 persons, the value depending slightly on whether one defines

“all” as all blocks with at least one census housing unit, or as all blocks with at

least one census person record (which could be imputed) in a housing unit. As with

counties, the MAEs increase substantially with the block size categories. As noted

above, MAPEs can be unstable for small blocks, and so are not shown.

Table 2. Simulated census coverage error measures for blocks

percentiles of errors

Subsets of blocks  MAE 05% 25% 5%

All with number of HU  1 6 379 963 54 −47 −18 −11
All with HU pop  1 6 188 078 56 −48 −18 −12
HU pop 1− 9 1 825 130 06 −4 −2 −1
HU pop 10− 99 3 663 268 44 −15 −10 −8
HU pop 100− 999 691 557 232 −97 −57 −42
HU pop 1 000+ 8 123 1547 −430 −293 −242

Table 2. (continued) Simulated census coverage error measures for blocks

percentiles of errors

Subsets of blocks 25% 50% 75% 95% 975% 995%

All with number of HUs  1 −3 0 1 12 23 73

All with HU pop  1 −3 0 1 13 24 74

HU pop 1− 9 0 0 0 2 3 5

HU pop 10− 99 −3 −1 1 12 19 41

HU pop 100− 999 −16 −8 6 61 97 222

HU pop 1 000+ −135 −78 31 388 591 1 210

HU = housing unit, MAE = Mean Absolute (L1) (coverage) Error

Source: Comparisons of 2010 SF1 census counts with author’s simulated population

figures.

Despite the small number of simulations performed (25), the simulation error at

the block level was very small. In fact, the amount of variation across simulations

for the percentiles was none or very close to none for all but the largest block size

category due to the very large numbers of blocks in all the other block size categories.

Even for the HU pop 1 000+ category the simulations of the three middle percentiles

— 25%, 50%, and 75% — had very little variation over simulations, as was also the case

for the MAEs. There was more variation across simulations for the county results,

though still generally quite small in a relative sense. For example, the highest Monte

Carlo standard error for a MAPE was about 004% for the group of counties with

population less than 1,000. For all the other county size groups, the Monte Carlo

standard error on the MAPE was less than 001%.
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Appendix: Comparing the distributions of simulated block  and census inclusion

proportions to the distributions of block level  and P-sample match rates from

the 2010 PES

The 2010 PES E-sample — a sample of the census enumerations of 5,687 blocks —

was matched to the PES sample drawn from the same blocks, with nonmatches fol-

lowed up to determine if they were correct or erroneous census enumerations. Sample

weighted estimates of the  proportions were obtained for these individual

blocks, and used to estimate the distribution of the block level  proportions.

A limitation of this is the fact that the E-sample weighting was designed to scale up

person estimates to represent populations for larger areas, not to scale up calcula-

tions for individual blocks to represent the universe of census blocks. Nonetheless,

this calculation should provide a general indication of how much block level 

proportions can vary. Table 3 shows a number of percentiles of this distribution in

comparison to percentiles of the corresponding distribution obtained from a simu-

lation of s for all 2010 census blocks with positive data defined counts, done as

described above. We see very close agreement between the two distributions, indi-

cating that the simulations produce a realistic amount of variation of the block level

s.

Table 3. Percentiles of block level CE proportions

Level 2010 PES Simulated population

100% (max) 1.00 1.00

99% 1.00 1.00

95% 1.00 1.00

90% 1.00 1.00

75% 1.00 1.00

50% .97 .97

25% .93 .93

10% .87 .89

5% .83 .84

1% .64 .67

0% (min) 0.00 0.00
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Table 4 compares distribution percentiles of block level 2010 P-sample match rates,

 , estimated using 5,664 blocks of P-sample data, with corresponding percentiles of

ratios  (simulated census correct enumerations over simulated true population)

from one simulated population. (Under the independence assumption used for DSE,

 estimates ). While the agreement between the two is not as striking as for

the  =  proportions in Table 3, there is still good agreement. It should

also be noted that, given the large number of blocks involved in the simulations

(about 6.2 million with at least one data defined census person in a housing unit),

the distribution of the simulated rates does not vary much across the simulations.

Table 4. Percentiles of block level  and  proportions

Level 2010 PES  Simulated population 

100% (max) 1.00 1.00

99% 1.00 1.00

95% 1.00 1.00

90% 1.00 1.00

75% .97 1.00

50% .93 .96

25% .86 .85

10% .77 .73

5% .69 .66

1% .33 .50

0% (min) 0.00 0.09
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